From the Editor's Desk In our collective decades of experience building, leading, and studying companies’ machine learning (ML) deployments, we have repeatedly seen projects fail because talented and well-resourced data science teams missed or misunderstood a deceptively simple piece of the business context. Those gaps create obstacles to correctly understanding the data, its context, and the intended end users — ultimately jeopardizing the positive impact ML models can make in practice. |
Wednesday 15th January 2025
Top stories this week